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Abstract 

Background:  Intense conversion of tropical forests into agricultural systems contributes to habitat loss and the 
decline of ecosystem functions. Plant-pollinator interactions buffer the process of forest fragmentation, ensuring gene 
flow across isolated patches of forests by pollen transfer. In this study, we identified the composition of pollen grains 
stored in pot-pollen of stingless bees, Tetragonula laeviceps, via dual-locus DNA metabarcoding (ITS2 and rbcL) and 
light microscopy, and compared the taxonomic coverage of pollen sampled in distinct land-use systems categorized 
in four levels of management intensity (forest, shrub, rubber, and oil palm) for landscape characterization.

Results:  Plant composition differed significantly between DNA metabarcoding and light microscopy. The overlap in 
the plant families identified via light microscopy and DNA metabarcoding techniques was low and ranged from 22.6 
to 27.8%. Taxonomic assignments showed a dominance of pollen from bee-pollinated plants, including oil-bearing 
crops such as the introduced species Elaeis guineensis (Arecaceae) as one of the predominant taxa in the pollen sam-
ples across all four land-use types. Native plant families Moraceae, Euphorbiaceae, and Cannabaceae appeared in high 
proportion in the analyzed pollen material. One-way ANOVA (p > 0.05), PERMANOVA (R² values range from 0.14003 to 
0.17684, for all tests p-value > 0.5), and NMDS (stress values ranging from 0.1515 to 0.1859) indicated a lack of differen-
tiation between the species composition and diversity of pollen type in the four distinct land-use types, supporting 
the influx of pollen from adjacent areas.

Conclusions:  Stingless bees collected pollen from a variety of agricultural crops, weeds, and wild plants. Plant com-
position detected at the family level from the pollen samples likely reflects the plant composition at the landscape 
level rather than the plot level. In our study, the plant diversity in pollen from colonies installed in land-use systems 
with distinct levels of forest transformation was highly homogeneous, reflecting a large influx of pollen transported by 
stingless bees through distinct land-use types. Dual-locus approach applied in metabarcoding studies and visual pol-
len identification showed great differences in the detection of the plant community, therefore a combination of both 
methods is recommended for performing biodiversity assessments via pollen identification.
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Background
Rainforest composition is highly reliant on pollinators 
(insects and other groups) to facilitate plant reproductive 
interactions [1]. Likewise, pollinators rely on flowering 
plants as a nutritional source [2]. Patterns of pollen dis-
persal frequently reflect pollinator foraging preferences 
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(e.g. generalist or specialist species) in response to plant 
mating strategies [3]. These dynamics between plants and 
pollinators play an important role in establishing com-
munity structure and distribution range of species [3]. 
Bees (Hymenoptera: Anthophila) are considered one of 
the main pollinators of tropical trees [4], and declines 
in bee populations have been caused by the reduction 
of resources due to land-use intensification [2]. Barnes 
et al. [5] showed that land-use-induced changes in tropi-
cal forests alter species richness by direct and cascading 
effects on landscape conversion, with negative impacts 
on plant communities and, consequently, on associated 
pollinators. Several studies pointed out that forest frag-
mentation and habitat conversion triggered by agricul-
tural intensification promote a decline in plant-pollinator 
composition and changes in functional diversity [1–5]. 
In Southeast Asia, large-scale rainforest conversion into 
monocultures (e.g. oil palm and rubber) is triggering a 
steep increase in species extinction rate and consequently 
leading to a loss in ecosystem functioning and services 
[5, 6]. Disturbances driven by agricultural intensification 
in interactions between plants and pollinators interrupt 
functional composition and reduce the diversity of polli-
nators, consequently harming pollination services [7–9]. 
However, detailed evidence of the impact of land-use 
intensification on specific pollinators and their develop-
mental plasticity remains lacking [10].

Pollen availability is a function that can be used to 
extrapolate measures of community diversity at the 
landscape level, with more information on the seasonal 
dynamics of the landscape. The intensification of land-
use changes from forest to agricultural systems leads 
to a ubiquitous decrease in native plant diversity that 
rebounds on plant-pollinator interactions [5, 11, 12]. 
Knowledge of pollen composition and plant species 
diversity allows us to understand functional plant-polli-
nator interactions, and it might reflect species response 
to environmental disturbance and biodiversity losses 
[13]. However, once the plant diversity of habitats adja-
cent to the hive or nesting sites decreases, the foraging 
distances of bees increase proportionally in response 
to the impact of the land-use transformations [14–18]. 
Thus, the resource gap triggered by the intensification of 
land use can be buffered by the increase in bees’ foraging 
distances [14]. And the pollen influx between fragmented 
landscapes can be a proxy for landscape connectivity, as 
long-distance gene flow by pollen connects species from 
isolated patches via pollination[19].

Plant-pollinator interactions are usually investigated 
based on observation of host-plant visitation or sampling 
of the pollinators and later identification of pollen car-
riage through morphological characters, which demands 
time and expertise [20, 21]. The most used approach to 

assess the floral composition of pollen is via light micros-
copy using micro-morphological analysis of pollen. How-
ever, this process can be time-consuming and laborious, 
and the interpretation of results can be challenging since 
pollen of some species can be difficult to distinguish 
[21–24]. DNA metabarcoding approaches have emerged 
as an alternative for biodiversity surveys without prior 
taxon identification, enabling simultaneous sequenc-
ing and multi-taxa identification of mixed material, and 
among other applications, it is well suited to disentangle 
plant-pollinator interactions without the requirement for 
palynological knowledge [21, 25]. High yield sequencing 
produces a large number of barcode sequences allowing 
the identification of multiple species in a single reaction 
but does not have the precision to infer the relative abun-
dance of the pollen types due to possible quantitative 
biases produced during DNA isolation, amplification, 
and sequencing [26]. For plant material identification, 
including pollen grains, universal chloroplast markers 
(rbcL and matK) have proven to be reasonably success-
ful [27]. Most of the studies have employed the plastid 
region rbcL  together with the nuclear ribosomal marker 
ITS2 because the selection of plant barcode markers 
should be a balance between universality and discrimina-
tion, this is achieved by employing both  rbcL  and ITS2 
regions [28].

Stingless bees (Hymenoptera: Apoidea: Apidae: 
Meliponini) are recognized as resilient to disturbance, 
due to their ecological plasticity and capability of long-
distance dispersal in agricultural or degraded landscapes 
[29]. In this study, we selected a generalist species model, 
the stingless bee species Tetragonula laeviceps (Smith, 
1857), which is widely distributed through landscape 
mosaics in Southeast Asia composed of remnants of 
rainforest, shrub, rubber, and oil palm plantations. Sting-
less bees deposit the foraged pollen in cerumen pots, or 
pot-pollen, which contain wax and resin [30]. Identifying 
pollen stored in pot-pollen can be highly informative to 
understand bee foraging behavior and for biomonitoring 
of terrestrial ecosystems. Despite the decline of special-
ist pollinators because of forest conversion in tropical 
landscapes, stingless bees and other generalist pollinators 
play an important role in the maintenance of ecosystem 
functioning. They offset pollination scarcity of specialist 
pollinators and indirectly restore pollination functions 
[29, 31]. Colony fitness, reproduction, and diversity of 
pollen resources have been associated with plant spe-
cies richness [10, 32], however, the composition of pollen 
resources required to maintain colonies of T. laeviceps in 
converted agricultural systems remains unknown. In this 
study, we installed hives of T. laeviceps in converted rain-
forest areas in central Sumatra, Indonesia, and employed 
multi-locus DNA metabarcoding and light microscopy (i) 
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to identify the composition of T. laeviceps pot-pollen, (ii) 
to compare the taxonomic assignments of pollen using 
both techniques, and (iii) to assess resource use apply-
ing both methods across varying land use types (forest, 
shrub, rubber, and oil palm).

Results
A total of 31 samples of mixed pollen material from 18 
plots were successfully analyzed in this study (Additional 
file  6: Table  S1). We detected 72 plant families, 93 gen-
era, and 99 species using both metabarcoding and light 
microscopy (Additional file 7: Table S2, Additional file 8: 
Table  S3, and Additional file  9:Table  S4). After filtering 
taxa with low coverage (< 1% of reads per sample) in the 
metabarcoding data sets, 53 families, 63 genera, and 53 
plant species were detected using metabarcoding and 
light microscopy. The plant families Moraceae, Euphorbi-
aceae, Cannabaceae, and Arecaceae were identified as the 
most abundant plant families by DNA-based assessment 
and morphological identification (Figs. 1, 2).

Sequencing data
The high-throughput sequencing provided a total of 
1,746,360 paired-end reads for rbcL, ranging from 17,803 
to 166,036 reads per sample. The mean number of reads 
for rbcL per sample was 58,212. The total number of 
merged reads was 1,450,655  for  rbc L, and a total of 1 
,211,945 paired-end reads with Phred Quality Score (Q) 
higher than 19 after merging forward and reverse reads. 
The mean paired-end length of joined reads was 246 bp 
ranging from 100 to 486 bp.

The total number of pair ed-end reads for ITS2 was 
1,760,404, the number of reads varied from 11,274 to 
197,501 per sample, with a mean of 56,787 reads per 
sample. After merging fo rward and reverse reads, we 
obtained a total of 969,276 reads for ITS2, and 833,062 
pai red-end reads remained after filtering (Q > 19, 
sequence length > 100  bp). The sequences presented a 
mean length of 196 bp and a length ranging from 100 to 
533 bp after merging forward and reverse reads for each 
locus.

After taxonomic annotation of sequences, a total of 
559,349 reads of rbcL with an average sequence length 
of 447  bp, and 234,771 reads of ITS2 with an average 
length of 419 bp were taxonomically assigned. For rbcL, 
more than 84% of all the sequences obtained in this study 
were assigned with more than 99% of similarity to the 
sequences in the reference database. While for ITS2, 60% 
of all the sequences were assigned with more t han 99% of 
similarity to the reference database (Additional file 1: Fig. 
S1). Species accumulation curves plotted using species 
richness and sequence depth obtained for each marker 
were close to saturation, indicating that our sampling 

extensively reflects the biodiversity of the studied area 
(Additional file 1: Fig. S1).

OTU assignments in dual‑locus metabarcoding datasets
OTU assignments based on the dual-locus approach 
identified a total of 59 families, 97 genera, and 98 plant 
species (Additional file  7: Table  S2, Additional file  8: 
Table S3). The nuclear ITS2 region distinguished 29 fami-
lies, 43 genera, and 50 plant species (Additional file  7: 
Table  S2); and a total of 54 families, 78 genera, and 58 
plant species were identified using rbcL (Additional file 8: 
Table  S3). Redundant taxa identified by both barcode 
regions represented 40.7% (N = 24) of families (Addi-
tional file 2: Fig. S2), 23.5% (N = 23) of genera, and 7.1% 
(N = 7) of the plant species. The plant composition and 
total frequency of each plant family detected by ITS2 and 
rbcL were significantly different (Wilcoxon signed-rank 
test: V = 11,036, p-value < 0.001).

After removing the taxa with low proportion of 
sequence reads (< 1% reads of each sample), OTU assign-
ments of both loci recovered 32 plant families, 46 gen-
era, and 52 species (Additional file 7: Table S2, Additional 
file 8: Table S3). Taxonomic assignments using the ITS2 
marker recovered 16 families, 19 genera, and 22 species; 
in contrast, rbcL sequences were assigned to 26 fami-
lies, 36 genera, and 32 species. In total, OTU taxonomic 
assignments were redundantly identified by both loci 
after the removal of low sequence readings in the sam-
ples (< 1%) in 31.3% (N = 10) of the plant families, 19.6% 
(N = 9) of the genera, and 3.8%  of the species (N = 2). 
Among the taxa with the highest proportion of reads, 
Euphorbiaceae and Moraceae appear as dominant plant 
fami lies detected using ITS2 in respectively 49% and 
34% of the reads. Cannabaceae (4%), Melastomataceae 
(3%), Urticaceae (1.7%), and Arecaceae (1.7%) comprise 
the next most abundant plant families identified using 
ITS2 (Figs. 1, 2, Additional file 7: Table S2). In addition, 
taxon composition detected using rbcL revealed that 21% 
of reads were assigned to Lauraceae and 20% to Lami-
aceae. The following most abundant plant families were 
Fabaceae (14%), Moraceae (11.5%), Arecaceae (10%), and 
Euphorbiaceae (5.5%) (Figs.  1, 2). Most plants detected 
by OTU assignments using rbcL were classified as native, 
except for Arecaceae and Muntigiaceae (Additional file 8: 
Table S3).

Pollen composition by light microscopy
A total of 42 pollen morphotypes were identified using 
light microscopy. All morphotypes could be assigned 
at the family level (N = 33), 20 morphotypes were 
identified at the genus level, and only 2 morphotypes 
were identified at the species level (Additional file  9: 
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Table  S4). The most abundant plant families detected 
via light microscopy were Euphorbiaceae (26%), fol-
lowed by Moraceae (20%), Cannabaceae (10%), Dip-
terocarpaceae (7%), Elaeocarpaceae (7%), Arecaceae 
(5%), and Acoraceae (5%) (Figs. 1, 2).

Comparing dual‑locus metabarcoding and light 
microscopy datasets
Only 19.4% (N = 14) of pla nt families were redundantly 
detected by ITS2, rbcL, and light microscopy (Addi-
tional file  2: Fig. S2-A). The proportion of redundant 
plant families detected by both methods increased to 

Fig. 1  Annotated phylogeny of plant families identified in the pollen samples using dual-locus metabarcoding and light microscopy. Followed 
by the representation of the plant families detected by metabarcoding loci (rbcL and ITS2) and light microscopy: presence (full square)—absence 
(empty square) of each plant family. And the barplot of the relative abundance of each detected plant family using the two metabarcoding 
loci (rbcL and ITS2) and light microscopy. *Rare plant families with relative abundance values close to zero are not displayed in the barplot 
representation
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27.8% (N = 20) when combining data from both loci 
and comparing it with the plant families detected by 
light microscopy (Additional file  2: Fig. S2-B). After 
excluding taxa detected in less than 1% of the total 
reads per sample, only 11.3% (N = 6) of the plant fami-
lies were detected by ITS2, rbcL and light microscopy 
(Additional file 2: Fig S2-C). In contrast, a total of 22.6% 
(N = 12) of plant families were detected by combining 

the taxonomic assignments obtained using the two 
metabarcoding loci and light microscopy (Additional 
file 2: Fig. S2-D).

The taxa composition at the family level and its 
proportions assigned by ITS2 and light microscopy 
were significantly different (Wilcoxon signed-rank 
test: V = 2200, p-value = 0.011). Likewise, the taxo-
nomic assignments implemented using  rbcL  and light 
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microscopy showed significant differences  (Wilcoxon 
signed-rank test: V = 0.377, p-value < 0.001).

Despite the high number of families detected in the 
pollen samples, only a few plant families represent about 
70% of the total number of sequence reads and counts via 
light microscopy, indicating a predominance of certain 
taxa in the samples. The most abundant plant families 
were Moraceae, Euphorbiaceae, Cannabaceae, Arecaceae, 
Lauraceae, Lamiaceae, Fabaceae, Dipterocarpaceae, and 
Elaeocarpaceae (Figs. 1, 2).

Pollen composition across land use types
A higher number of plant families were detected in all 
land use systems using the  rbcL  region compared to 
ITS2 or light microscopy  (Additional file  2: Fig. S2). 
Kruskal–Wallis tests revealed no significant differences 
(p-value > 0.05) between the occurrence of individual 
OTU across the four land use systems for the metabar-
coding and light microscopy datasets. NMDS (ITS2 
stress value = 0.1859,  rbcL  stress value = 0.1515, and 
light microscopy stress value = 0.1611, Fig. S3), PER-
MANOVA (ITS2 R² = 0.14003;  rbcL  R² = 0.17684; light 
microscopy R² = 0.14705; p-value > 0.5 for all tests; see 
Additional file 10: Table S5, Additional file 11: Table S6, 
and Additional file 12: Table S7), and One-way ANOVA 
(p > 0.05) (Additional file 13: Table S8, Figs. 3, 4) indicated 
lack differentiation between the pollen composition and 
pollen diversity in the  four land use systems, suggest-
ing that pollen deposited in pot-pollen can be used as a 
diversity proxy at landscape level rather than reflecting 
the diversity at plot level.

A wide overlap between the plant families was 
observed across the four land use types (Fig. 3), however, 
it is interesting to highlight that pollen from character-
istic plant families to primary or secondary forest areas, 
e.g., Dipterocarpaceae and Phyllanthaceae, were found 
with a greater proportion in less intensively managed 
plots (Fig. 3, Additional file 4: Fig. S4). In contrast, pollen 
from Asteraceae, Cleomaceae, and Urticaceae, which are 
commonly associated with open habitats, were detected 
in higher proportions in plots with less percentage of for-
est cover (i.e. rubb er and oil palm plots), likewise, pol-
len from agricultural crops, i.e. Discoreaceae, was mostly 
detected in oil palm plots (Fig.  3, Additional file  4: Fig. 
S4).

Discussion
Dual-locus metabarcoding and light microscopy were 
employed in our study to assess the taxonomic compo-
sition of pollen grains from pot-pollen of stingless bees 
and can be recommended as a landscape biomonitor-
ing tool because it is a time- and cost-effective method 
for the survey of biological communities [33]. The 

implementation of dual-locus in metabarcoding studies 
strikes as a more refined resource for the detection of low 
abundant taxa in pollen samples [26, 34]. An extensive 
list of plant families was obtained by the combination of 
both molecular and morphological-based techniques and 
lower taxonomic levels could be assessed by the metabar-
coding approach. Both methods detected the dominant 
constituents in the samples and a large number of rare 
taxa in low proportions. Strikingly, the lack of differentia-
tion in the taxonomic composition and diversity of pollen 
types sampled in the four land use types (forest, oil palm, 
rubber, and shrub) was supported by the ANOVA, PER-
MANOVA, and NMDS analyses, which indir ectly may 
indicate the influx of pollen from areas adjacent to the 
monoculture systems.

Taxonomic assignments of mixed pollen using dual-
locus metabarcoding and light microscopy showed that 
the most abundant taxa belong to bee-pollinated plants, 
including consumable and oil-bearing crops that charac-
terize the study region. Overall, dominant constituents 
in the samples displayed concordant relative abundances 
across methods. Moraceae, Euphorbiaceae, Arecaceae, 
and Cannabaceae were detected with a larger number 
of counts by both approaches. Other abundant constitu-
ents in the samples included the family Melastomataceae 
with a large number of reads detected by both loci. OTU 
assigned to the plant families Lamiaceae and Lauraceae 
were represented in a wide number of reads in the taxo-
nomic assignments using rbcL region, as well as mor-
photypes identified as Dipterocarpaceae, Elaocarpaceae, 
Acoraceae, Apocynaceae, Discoreaceae, and Rubiaceae 
represented a large proportion of the counts detected by 
light microscopy.

Variation in the taxonomic coverage by ITS2 and rbcL 
has also been observed in other studies [26, 34]. The 
variable number of the ribosomal DNA template copies 
within and between plant species, together with varia-
tion in primer binding site-specificity, and uneven DNA 
concentration of each pollen type could affect the cover-
age of reads per taxon [35] and explain the lower num-
ber of plant families detected in this study for the ITS2 
region in comparison with the rbcL region. Given that all 
plant families were available in the reference sequence 
database used for the taxonomic assignments, the lower 
number of plant families detected in  sequence assign-
ments using the ITS2 dataset was largely linked to the 
low level of percentage of identity between the query 
sequences and the reference library. In this study, we 
employed a threshold of 95% for the percentage of iden-
tity as a cut-off for sequence assignments. The sequence 
similarity score provides information on the taxonomic 
level, for some taxa, 99% of similarity might provide taxo-
nomic resolution at lower taxonomic levels (e.g. species 
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rank), according to the intraspecific level of polymor-
phism of the barcode locus and availability of reference 
sequences. The low percentage of identity between the 
query sequence and the database sequences for the ITS2 
region can be probably linked to the intrinsic characteris-
tics of this ribosomal region, such as problems in ampli-
fication due to paralogs and pseudogenes [36], or lower 
universality and sequence quality compared with plastid 
regions [37].

In our study, the overlap in the plant families identi-
fied with the two techniques ranges from 22.2 to 27.8%. 

Pollen samples obtained from pot-pollen contain also 
honey, wax, and other residual material from the col-
ony, and appear to enclose a fairly restricted number of 
dominant pollen constituents and an extensive number 
of pollen types in much-reduced proportion, even after 
deliberate implementation of homogenization steps for 
each sample. Therefore, multiple subsampling would be 
essential to access the low abundant taxa present in the 
samples [23]. Previous studies on pollen metabarcoding 
revealed that ITS2 failed to identify certain plant fami-
lies including Lamiaceae and Salicaceae [35]. We found 
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Fig. 4  Diversity metrics estimations of plant community detected in pollen samples using OTU assignments obtained using A rbcL, B ITS2 
sequences, and C and via morphological identification. Colors depict four land use types (forest, oil palm, rubber, shrub). One-way ANOVA of 
alpha-diversity does not show differentiation between all land use types (p > 0.05) for all methods used in this study
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that ITS2 and rbcL failed to detect pollen grains from 
13 plant families identified by light microscopy (among 
others Acoraceae, Actinidiaceae, Apocynaceae, Diosco-
reaceae, Dipterocarpaceae, and Elaeocarpaceae). DNA 
obtained from pollen material has proven to be success-
fully amplified using barcode markers over a large num-
ber of species, especially in angiosperms [22, 23, 25, 26, 
38]. Pollen grains display a wide variation in morphol-
ogy (size, shape) of each species, and these morphologi-
cal traits are most likely expected to play a role in the 
DNA extraction of the specimens [23]. Distinct outcomes 
of the taxonomic composition achieved using ITS2 and 
rbcL for pollen identification have also been reported 
recently [26], and are associated with the differences in 
the taxonomic coverage of the reference sequence, ampli-
fication success, and taxonomic resolution of the two 
markers [26]. A good compromise for this issue might be 
to employ a combination of techniques as conducted in 
the present study.

The percentage of sequence similarity between the 
query and the reference sequence has a significant impact 
on the OTU assignment. In our analysis, taxonomic 
assignments using rbcL outperformed ITS2, with con-
siderably higher sequence similarity. This is probably 
because of the lower level of polymorphism observed in 
the rbcL locus in comparison with the ITS2 region, and it 
is largely representated in the reference databases. Conse-
quently, higher sequence similarity is therefore expected 
for rbcL compared to ITS2. While similarity scores and 
phylogenetic relatedness are largely correlated, composi-
tion bias and rare heterogeneity reduce this relationship 
and may cause spurious identification [39]. RDP classi-
fier, a machine learning approach, has been successfully 
used for plant taxa detection as already shown [26, 34, 
40], and the accuracy of taxonomic assignments could 
be confirmed in our study by verifying the Lowest Com-
mon Ancestor (LCA) with the highest sequence similar-
ity score, and other strategies such as strict filtering in 
the pre-processing data analysis (e.g. removal of single-
tons and low abundant taxa). Other studies on Sumatra 
flora faced challenges for the taxonomic identification 
of some specific clades at the species level [27, 41, 42], 
which has been associated in some cases with incomplete 
lineage sorting, hybridization, or low levels of polymor-
phism of the markers, hindering the OTU assignments at 
lower taxonomic levels. In this study, 16 OTU assigned to 
Arecaceae, Burseraceae, Cyperaceae, Fabaceae, Icaci-
naceae, Lauraceae, Monimiaceae, Poaceae, Rubiaceae, 
and Rosaceae could only be identified at the family level 
in the rbcL dataset. For the ITS2 sequences, all the OTU 
could be assigned at the genus level.

The floral composition detected in our study via 
metabarcoding and light microscopy largely overlays 

with the most reported interactions between stingless 
bees and bee-pollinated plants in Indo-Malayan-Aus-
tralasia [32, 43, 44]. Stingless bees show foraging pref-
erences for flowering plants belonging to the families 
Fabaceae, Asteraceae, Malvaceae, Euphorbiaceae, Rubi-
aceae, Arecaceae, and Lamiaceae, spanning a wide vari-
ation in form types and covering pollination of crops, 
native and non-native flora [43, 45, 46]. This reflects 
the key role of stingless bees in ecosystem function-
ing and services. In addition, some of these flowering 
plant families display traits that facilitate pollination 
via entomophily, as the development of open corol-
las with numerous stamens allows easy accessibility of 
pollen and nectar [47] or development of floral resin 
(e.g. Dipterocarpaceae, Euphorbiaceae, Myrtaceae) that 
is attractive for resin collecting bees, such as stingless 
bees [32, 48, 49]. Many of the plants from the above-
mentioned families are also known to have evolved as 
generalists themselves toward pollinators. In order to 
maintain a polyfloral pollen diet and a large resin diver-
sity, bees face wider foraging distances [32]. Stingless 
bees from the genus Tetragonula have been recorded 
to forage distances up to 700  m from their nests [50]. 
The energy cost of large bee movements is rewarded in 
the form of nutritional content and protection against 
antagonists achieved through increased resin diversity, 
which provides several antimicrobial activities and can 
repel larger predators (i.e., ants) [32]. Our intensively 
managed study sites located within oil palm and rub-
ber plantations displayed patches of natural habitats 
within a 500 m radius, this heterogeneity supports the 
wide floral composition of detected pollen demonstrat-
ing environment interlinkages.

The rather homogeneous floral composition of pol-
len from pot-pollen collected from heterogeneous sites, 
both lowland forests, shrubland, and agro-ecosystems 
(rubber and oil palm plantations) offered information on 
stingless bees foraging behavior and reflects the floristic 
composition of the landscape. Of particular note is the 
wide variety of plant families in the pollen obtained from 
monocultures, where both native and alien plant taxa of 
different life forms were recorded by DNA metabarcod-
ing and light microscopy. No dramatic shift in biodiver-
sity could be detected among the distinct land use types 
by analyzing pollen material in this study. This supports 
the fact that stingless bees are generalist species and 
actively keep fragmented landscapes sturdily connected 
via pollen influx from a wide diversity of plant species. 
It reinforces that intensively managed systems are not 
essentially nutritional deserts for generalist species, such 
as stingless bees, and other bee species [35] because bees 
enhance pollen diversity by foraging in more diverse hab-
itats as a strategy for resource “diversity maximization” 
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[32]. Adjacent areas to field crop agroecosystems uphold 
a large influx of pollen diversity into converted systems.

Forest conversion to agricultural production promotes 
direct and cascading impacts on biodiversity [5]. Para-
doxically, crop yield is affected by the decline of biodi-
versity-related ecosystem services [51]. Despite the lack 
of differentiation in pollen composition identified in the 
four land use types in our study, higher temperatures 
have been recorded in more altered land use systems [52]. 
Higher temperatures and increased exposure is linked to 
an increased risk of colony mortality [53]. In this context, 
restoration efforts should be directed to the conservation 
of remaining forest patches and biological corridors, pro-
viding nutritional and nesting resources (such as resins) 
for pollinators [51]. Stingless bees may be beneficial for 
counteracting land use fragmentation by supplying pol-
lination services for sustainable agricultural development 
and conservation of natural ecosystems [54].

Although pollen identification can be applied indubi-
tably as a biomonitoring tool for biodiversity characteri-
zation, both light microscopy and DNA metabarcoding 
methods have major drawbacks. Some plants are difficult 
to morphologically distinguish at the species level, so 
unambiguous attribution of species based on sequences 
available in the reference database is not always possi-
ble. Furthermore, reference databases contain sequences 
from samples with unclear morphological species assign-
ments. This becomes more challenging when pollen 
originates from tropical species, as the availability of ref-
erence vouchers and specialists is scarcer. In addition, 
the use of local databases for taxonomic assignments 
provides an equal or higher percentage of plant species 
detections compared to regional databases and is asso-
ciated with a lower level of mismatches in OTU assign-
ments [55]. As many tropical species are still lacking 
reference sequences, in our study we used regional data-
bases for our taxonomic assignments and confirmed the 
assignments by verifying the Lowest Common Ances-
tor (LCA) in the distance tree of results. This approach 
has previously provided high levels of accuracy in taxo-
nomic assignments [56]. Even though quantitative data 
obtained using metabarcoding has been considered 
remarkably reliable, variations in DNA extraction effi-
ciency caused by morphological differences of interspe-
cific pollen grains may bias the amplification of the DNA 
copies and consequently affect the sequencing yield [21, 
25]. Cross-contamination of samples is also a known 
limitation of the metabarcoding approach [25, 26], this 
problem is often tackled by conservative filtering thresh-
olds, elimination of sequence reads that might appear in 
the negative control samples, or removal of low abun-
dant taxa per sample (< 1%) [26, 35]. Furthermore, false 
contaminations produced by tag jumps cause improper 

sequence assignments to samples and might take place at 
low proportions and mistakenly inflate diversity [57]. On 
top of that, a lack of standardization of metabarcoding 
bioinformatics pipelines represents a challenge for estab-
lishing this method in new research groups. Neverthe-
less, research focusing on optimizing the metabarcoding 
technique is progressing at leap steps [25, 26, 35, 58–60], 
as it enables the investigation of new research avenues in 
plant-pollinator interactions and landscape monitoring.

Conclusion
Our findings demonstrate that the pollen collection of 
the generalist bee species T. laeviceps is not limited by 
land use type, and therefore could play an important 
role in the pollination of wild plants and crops in a het-
erogeneous landscapes. Fu rthermore, our results point 
to the application of stingless bees as a successful model 
for landscape characterization and effective implementa-
tion as a large-scale sampling tool via DNA metabarcod-
ing of pollen collected from pot-pollen. Combining light 
microscopy and dual-locus metabarcoding for pollen 
identification enables a more refined detection of the flo-
ral composition, and it optimizes wildlife monitoring in 
terms of minimum invasive sampling, and high cost and 
time efficiency. Both techniques complement each other 
when applied in tropical studies, since some rare taxa 
may be difficult to identify by implementing either meta-
barcoding or light microscopy alone.

Methods
We characterized the land cover by estimating the pro-
portion of natural forest surrounding the beehives based 
on manually classified 1.5  m resolution SPOT satellite 
imagery with the scale of 1:5000 in the program QGIS 
[61]. The quantified land cover was then compared with 
supporting imagery in Google Maps and confirmed by 
field surveys and local expert knowledge (Darras et  al. 
in prep.). We estimated the total percentage of the forest 
cover using the package “landscapemetrics” [62] in the R 
version 4.0.3 [63] to determine the fraction of forest and 
shrub cover within a 500 m radius of each installed hive. 
We installed three beehives of T. laeviceps in 40 plots 
with coverage of 30 to 70% of forest and shrub vegetation 
within a 500  m radius set in an agricultural landscape 
mosaic in Jambi Province, central Sumatra, Indonesia. 
Sites were designated based on a similar gradient of natu-
ral habitat (forest and shrub) composition for all the land 
use types while maximizing their extremes, this means 
sites were subjected to the trade-off between oil palm and 
forest or shrub. Beehives were displayed in boxes under 
a shelter protected from sun and rain and exposed from 
July to December 2018 (end of field campaign). Samples 
of mixed pollen, resin, and wax were collected at the end 
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of the field campaign and maintained frozen at − 18 °C. 
The pollen composition present in pot-pollen was char-
acterized using DNA metabarcoding and palynological 
analysis for a total of 31 colonies located in 18 plots (5 
plots located in forest, 5 in oil palm, 5 in rubber, and 3 in 
shrub plots), the remaining hives died or were destroyed 
(Additional file 5: Fig. S5).

Pollen identification via light microscopy
Aliquots of 3 mL of mixed pollen, wax, and honey were 
treated following the standard protocol of the Interna-
tional Honey Commission including acetolysis [64, 65]. 
One tablet of Lycopodium clavatum was added to each 
sample to estimate palynomorph concentrations [66]. 
Residues were mounted in glycerol jelly for pollen visu-
alization, identification, and counting. Pollen and spore 
analyses were carried out using light microscopy. All 
identified pollen and spore types were photographed 
using a Leica photomicroscope with a 400 × magnifica-
tion. Pollen and spores were identified using the tropi-
cal pollen reference collections of the Department of 
Palynology and Climate Dynamics at the University of 
Göttingen. Pollen was counted and identified up to a 
total sum of 300 pollen grains per sample on two differ-
ent slides to maximize randomness.

DNA extraction, amplification, and high throughput 
sequencing
Aliquots of 0.5 ml of the samples were washed to remove 
the remaining beeswax and honey, before DNA extrac-
tion by two steps of centrifugation at 11  rpm for 1 min 
using 1000  µL nuclease-free water and discarding the 
supernatant and repeating the process two times with 
1000  µL ethanol 99%, and a final washing step using 
nuclease-free water. The samples were transferred to 
InnuSPEED Lysis Tubes Z (Analytik Jena AG) containing 
steel and glass mini beads. 400 µL of Lysis Solution CBV 
was added, and the pollen grains were ruptured using 
SpeedMill plus (Analytik Jena AG) for four cycles of 
4 min each and intervals of 4 min between cycles. DNA 
extraction was carried out using the Innuprep Plant DNA 
Kit (Analytik Jena AG), following the manufacturer’s 
guide.

The barcoding markers rbcL and ITS2 were amplified 
using the primers set rbcL2 [67] and rbcLa-R [68], and 
ITS2 S2F and ITS2 S3R [69], which yielded PCR products 
of 350 to 500 bp (Table 1). Each pollen sample was ampli-
fied in PCR triplicates/primer, as increasing the num-
ber of PCR replicates enhances the number of detected 
species in metabarcoding samples [70]. PCR reactions 
contained a final volume of 15.5 µL using 0.2 µL of Taq 
Hot FirePol (5  U/µL) from Solis BioDyne (Estonia), 
1.5 µL of 10X PCR Buffer (with 0.8 M Tris–HCl, 0.2 M 
(NH4)2SO4), 1.5  µL of MgCl2 (25  mM), 1.5  µL dNTPs 
(2.5 mM of each dNTP), 6.8 µL H2O, 1.5 µL of each for-
ward and reverse primers (5  pmol/µL) and 1  µL DNA 
(10–20  ng/µL). Thermal cyclic conditions included an 
initial activation step of 95 °C for 15 min, followed by 35 
cycles of 94 °C for 1 min, 50 °C for 1 min, 72 °C for 1 min, 
and a final extension step of 72 °C for 20 min. Addition-
ally, PCR negative, and positive controls (high-quality 
DNA from plant material that was successfully sequenced 
previously) were included in all reactions. PCR cleaning 
was done using GENECLEAN Kit (MP Biomedicals).

We pooled the PCR products of both amplicons before 
library preparation with a final concentration of 200  ng 
per sample. Amplicon concentrations were measured 
using a Qubit fluorescence spectrophotometer (Life 
Technologies). Dual-index sequencing libraries were 
prepared using the Illumina TruSeq Nano DNA High 
Throughput Library Prep Kit (96 samples), and Illumina 
TruSeq DNA CD Indexes (96 indexes, 96 samples), which 
ligates A-base ends to the DNA after a phosphorylation 
step. This step prepares the DNA for ligation to the index 
sequences and allows the sequence recovery from each 
sample in the bioinformatics analysis. DNA libraries were 
loaded at 10  pM concentrations with 10% PhiX control 
spike and sequenced in one single run carried out on Illu-
mina MiSeq using the MiSeq Reagent Kit v2—300 cycles.

Data analysis
Bioinformatics pipeline
The quality of Illumina raw reads was verified using 
FastQC [71], followed by the removal of primer 
sequences and adapters using Cutadapt [72]. Forward 
and reverse reads were merged using the command 
-fastq_mergepairs, and singletons, low-quality reads, 

Table 1  Barcoding regions, PCR primer sequences, and amplicon sizes

Barcode regions Primer Sequence Size References

rbcL rbcL 2_f TGG​CAG​CAT​TYC​GAG​TAA​CTC​ 500 bp Palmieri et al. [68]

rbcLa-R_r GTA​AAA​TCA​AGT​CCA​CCR​CG Kress and Erickson [69]

ITS2 ITS2 S2F_f ATG​CGA​TAC​TTG​GTG​TGA​AT 350–400 bp Chen et al. [70]

ITS2 S3R_r GAC​GCT​TCT​CCA​GAC​TAC​AAT​
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and short sequences (< Q score 20, < 100  bp, ambigu-
ous base-pairs) were removed with Usearch 11.0.667 
[73]. Sequences were dereplicated, sorted by size, and 
clustered using UPARSE-OTU algorithm in Usearch v. 
11.0.667 [74, 75]. Taxonomic assignments of OTU were 
done using the trained databases available for the regions 
ITS2 [34] and rbcL [76] prepared with the RDP classifier, 
a machine learning approach based on the naïve Bayes 
method [40] using 95% identity. Additionally, all OTU 
sequences were subjected to a BLAST search assess-
ment using blastn in the NCBI Genbank to confirm the 
accuracy of the taxonomic assignments by verifying the 
Lowest Common Ancestor (LCA) in the distance tree 
of results with the highest sequence similarity score. 
A detailed script of the workflow was added to https://​
github.​com/​Caris​Moura/​Pollen_​Metab​arcod​ing_​Indon​
esia-/​blob/​main/​Pipel​ine.

We plot a histogram of the percentage of similarity 
score for rbcL and ITS2 sequence reads compared against 
the reference sequence databases used in the study. 
Accumulation curves of taxa detected in the four land 
use types (forest, oil palm, rubber, and shrub) were plot-
ted using both metabarcoding loci to evaluate the sample 
coverage using RStudio, R version 4.0.3 [63].

Pollen composition by DNA metabarcoding and light 
microscopy
To reduce possible bias connected to unequal sequenc-
ing depth, we opted for conducting all downstream data 
analysis with taxa more abundant than 1% per sample 
[35, 77] and normalized the out tables based on mean 
sequencing depth using the phyloseq package [78] in the 
R version 4.0.3 [63].

The plant community profile was displayed in a phy-
logenetic tree and bar plots showing the relative abun-
dance of each taxon assigned to the family level using the 
sequencing and light microscopy results implemented 
in TimeTree [79] and annotated using iTOL [80]. Differ-
ences in the detected pollen composition using ITS2 and 
rbcL markers, and light microscopy were tested using the 
Wilcoxon rank-sum exact test implemented in R version 
4.0.3 [63]. To facilitate the visualization of the overlap in 
the detected plant community using the different meth-
ods, we plotted Venn’s diagrams of the plant families 
detected using each approach [81] and bar plots of the 
relative frequency of the ten most abundant plant fami-
lies detected per approach using the phyloseq package 
[78] in the R version 4.0.3 [63].

Kruskal–Wallis test was also implemented for compari-
sons of individual OTU composition across the four land 
use types for metabarcoding and light microscopy in R 
version 4.0.3 [63].

Pollen composition across land use types
The top 10 most abundant taxa per land use type were 
displayed in bar plots showing the relative abundance of 
each taxon assigned to families based on the sequenc-
ing and light microscopy results using the R package 
phyloseq [78]. We inferred alpha diversity (Observed 
richness, Shannon and InvSimpson index) per land use 
type (forest, shrub, rubber, and oil palm) using the nor-
malized coun ts of reads in the R package phyloseq 
with the function estimate_richness [78]. Normality 
and homoscedasticity of the alpha diversity values were 
tested using Shapiro–Wilk and Levene’s test (Additional 
file 14: Table S9), respectively. OTU tables obtained using 
rbcL and ITS2 markers were merged using the function 
merge_phyloseq in the R package phyloseq. Differences 
between observed richness detected by ITS2, rbcL, and 
light microscopy across the four land use types were 
estimated using One-way ANOVA using the function 
aov in the R package agricolae. Non-metric multidimen-
sional scaling (NMDS) ordination of plant family com-
position in pot-pollen detected by both DNA-based and 
morphological approaches was estimated based on the 
Bray–Curtis dissimilarity between pollen composition of 
each colony in the four land use types using the R pack-
age vegan [82]. We conducted a Permutational Multivari-
ate Analysis of Variance (PERMANOVA) test to estimate 
dissimilarities in species composition in the different 
land use types with the function adonis (n = 999 permu-
tations) based on Bray–Curtis dissimilarity.
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The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12862-​022-​02004-x.

Additional file 1: Figure S1. Percentage of similarity score of rbcL and 
ITS2 sequence reads obtained from mixed pollen samples compared 
against the taxonomic reference database (at left). Accumulation curve of 
taxa detected in four land-use types (forest, shrub, rubber and oil palm) 
using the taxonomic assignments achieved using sequence reads of rbcL 
and ITS2 of pollen material (in the center). Accumulation curve of species 
richness detected in colonies located at each plot (at right).

Additional file 2: Figure S2. Diagrams illustrating overlap between the 
plant families’ composition detected by dual loci metabarcoding (rbcL 
and ITS2) and light microscopy in pot-pollen samples. A) Total number 
and percentage of plant families detected using rbcL, ITS2, and light 
microscopy. B) Total number and percentage of families detected by the 
combined two metabarcoding loci in comparison with the light micros-
copy results. C) Total number and percentage of families detected using 
rbcL, ITS2 (excluding taxa present in less than 1% of the total number of 
reads per sample), and palynology. D) Total number and percentage of 
families detected by the combined two metabarcoding loci (excluding 
low abundant taxa detected in less than 1% of the total number of reads 
per sample) in comparison with the light microscopy results.

Additional file 3: Figure S3. Non-metric multidimensional scaling of 
plant family composition in pot-pollen from four land-use types calcu-
lated using a Bray-Curtis based on: (A) ITS2 (stress value = 0.1859), (B) rbcL 
(stress value = 0.1515) and (C) light microscopy (stress value = 0.1611). 
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Each point represents the composition of pollen of each plot site located 
in the four land-use types (forest, oil palm, rubber and shrub).

Additional file 4: Figure S4. Top 10 plant families detected in pollen 
samples via (A) DNA metabarcoding – rbcL and (B) ITS2; and (C) light 
microscopy.

Additional file 5: Figure S5. Workflow of experiment design, laboratory 
experiments, and summary of pollen metabarcoding pipeline.

Additional file 6: Table S1. Sample information of pot-pollen material 
collected from hives installed in four land-use types (forest, shrub, rubber, 
and oil palm), including sample IDs used in this study, respective colony 
IDs, plot coordinates, and percentage of natural cover (pcNatural) within a 
500 m of each installed hive.

Additional file 7: Table S2. OTU assignments and reads count of pot-
pollen samples based on the locus ITS2.

Additional file 8: Table S3. OTU assignments and reads count of pot-
pollen samples based on the locus rbcL.

Additional file 9: Table S4. Morphological identification of pot-pollen 
samples based on light microscopy.

Additional file 10: Table S5. Permutational Multivariate Analysis of Vari-
ance (PERMANOVA) test based on rbcL data set with the function Adonis 
(999 permutations) of the Bray-Curtis dissimilarities.

Additional file 11: Table S6. Permutational Multivariate Analysis of Vari-
ance (PERMANOVA) test based on ITS2 data set with the function Adonis 
(999 permutations) of the Bray-Curtis dissimilarities.

Additional file 12: Table S7. Permutational Multivariate Analysis of 
Variance (PERMANOVA) test based on light microscopy data set with the 
function Adonis (999 permutations) of the Bray-Curtis dissimilarities.

Additional file 13: Table S8. Results from One-way ANOVA for the 
observed richness across the four land-use types (forest, oil palm, 
shrub, and rubber) detected by ITS2, rbcL, both loci merged and light 
microscopy.

Additional file 14: Table S9. Results of Normality test (Shapiro-Wilk) and 
Homoscedasticity (Levene’s Test) for alpha-diversity metrics (Observed 
Richness, Shannon and InvSimpson) estimated for ITS2, rbcL, the merged 
loci and light microscopy. 
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